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Bis(cyclopentadienyldicarbonyliron) ([CpFe(CO)2]2) serves
as a carbon monoxide source in carbonylative coupling
reactions. Treatment of aryl iodides with primary amines in
the presence of DBU and [CpFe(CO)2]2 under palladium
catalysis provides the corresponding benzamides in good yields.
Similar reactions with phenols and thiols provide the corre-
sponding benzoate esters and thioesters, respectively. A catalytic
amount of DMAP as an additive promoted the carbon-
ylative coupling reactions with primary alcohol and secondary
amine.

Transition-metal-catalyzed carbonylative cross-coupling re-
actions in the presence of carbon monoxide are useful methods
for synthesizing carbonyl compounds.13 Because of the inherent
difficulty in handling highly toxic carbon monoxide, consid-
erable efforts have been made to develop carbon monoxide
equivalents to achieve CO-gas-free carbonylation.4 Organic
carbonyl compounds such as pentafluorobenzaldehyde and N,N-
dimethylformamide are known to serve as carbon monoxide
equivalents.57 However, the scope of substrates and hence the
diversity of products are limited. Alternatively, metal carbonyl
complexes are also useful as carbon monoxide sources since
they emit carbon monoxide upon heating. [Ni(CO)4] was first
used stoichiometrically in carbonylative reactions.8 Because of
the high toxicity of the nickel complex, palladium-catalyzed
reactions with safer solid metal carbonyls such as [Mo(CO)6],9

[Cr(CO)6],9b and [W(CO)6]9b,9h,9i have been developed.10

Iron is a ubiquitous, inexpensive, and nontoxic transition
metal, and iron compounds have thus been attracting increasing
attention in organic synthesis.11 Despite the superiority of iron
over molybdenum, chromium, and tungsten, [Fe(CO)5] and
[Fe3(CO)12] were reported to be unreactive for palladium-
catalyzed carbonylative coupling.9b This was indeed the case,
and our attempts to use the simple iron carbonyl complexes
resulted in failure. Instead, we found that economical and easy-
to-handle bis(cyclopentadienyldicarbonyliron) ([CpFe(CO)2]2)
serves as a source of carbon monoxide in palladium-catalyzed
carbonylative coupling for synthesizing aromatic amide
(Table 1). Treatment of 4-iodotoluene with aniline in the
presence of a catalytic amount of palladium acetate, [CpFe-
(CO)2]2 (1.5 equiv), and 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU) in refluxing toluene for 1 h provided expected amide
1a quantitatively (Entry 1). It is worth noting that other iron
carbonyl complexes such as [CpFe(CO)2I], [Cp*Fe(CO)2]2,
[Cp*Fe(CO)2I], and [Fe2(CO)9] were useless under the reaction
conditions and that almost no conversions were observed.12

Since 1.5 equiv of [CpFe(CO)2]2 corresponds to 6 equiv
of carbon monoxide, we thus tried to reduce the amount of
[CpFe(CO)2]2. The amount of [CpFe(CO)2]2 could be reduced
to 0.75 equiv without significantly deteriorating the yield
(Entry 2). In the presence of 0.38 equiv of [CpFe(CO)2]2 (1.5
equiv of CO), the reaction proceeded cleanly to afford a 70%
yield of 1a, the remainder of mass balance being unreacted
4-iodotoluene (Entry 3). To increase the efficiency of the
reaction with 0.38 equiv of [CpFe(CO)2]2, we further examined
the effect of ligand. Tricyclohexylphosphane slightly improved
the yield to 79% (Entry 5) whereas triphenylphosphane and
bidentate 1,2-bis(diphenylphosphano)ethane had no and adverse
effects, respectively (Entries 4 and 6). The choice of strong
organic bases such as DBU and 1,5-diazabicyclo[4.3.0]non-
5-ene (DBN, Entry 7) is critical. Other organic bases such as
1,4-diazabicyclo[2.2.2]octane, tributylamine, and pyridine as
well as inorganic bases such as cesium carbonate and potassium
t-butoxide failed to promote the reaction. In analogy with the
molybdenum-mediated carbonylation,9b DBU would strongly
coordinate to iron, which leads to irreversible release of carbon
monoxide from iron carbonyl complexes.

Finally, the use of 2 equiv of iodobenzene and a prolonged
reaction time could improve the yield of 1b (based on
4-toluidine) while reducing the amount of the palladium catalyst
to 1mol% (Table 2, Entry 1).13 A variety of benzamides were
synthesized under the optimized reaction conditions. Primary
amines, both aromatic and aliphatic, reacted smoothly to afford
the corresponding benzamides in good yields (Entries 17). The

Table 1. Optimization of conditions

Entry [CpFe(CO)2]2/equiv Ligand Base Yielda/%

1 1.5 none DBU 100
2 0.75 none DBU 96
3 0.38 none DBU 70
4 0.38 PPh3 DBU 69
5 0.38 P(c-C6H11)3 DBU 79
6 0.38 DPPE DBU 43
7 0.38 P(c-C6H11)3 DBN 69

aThe remainder of mass balance was unreacted 4-iodotoluene.
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electronic as well as steric nature of anilines did not influence
the efficiency of the reaction. The scope of aryl iodides is wide
(Entries 810) although the yield of 1l was moderate because
a part of the acetyl groups reacted with aniline to yield the
corresponding imine (Entry 11). Bulky 9-iodoanthracene was
less reactive (Entry 12). Aside from aryl iodide, ¢-iodostyrene
reacted to afford cinnamamide 1n (Entry 13).

Phenols and alkanethiol are good partners in the carbon-
ylative coupling reactions (Table 3). In the reactions with
alkanethiol, larger amounts of the iron complex and the
palladium catalyst were essential to achieve satisfactory results
(Entries 711). The reaction with aromatic benzenethiol afforded

2l in moderate yield (Entry 12). Compared to carbonylative
amidation and esterification, synthesis of thioesters by carbon-
ylation of aryl halides under an atmosphere of carbon monoxide
is difficult.14 Our approach to thioesters is much more efficient,
user-friendly, and thus useful.

The reaction with a secondary amine, morpholine, was
sluggish under the standard reaction conditions (eq 1). Gratify-
ingly, a catalytic amount of 4-dimethylaminopyridine (DMAP)
as an additive improved the yield of 3.15 The effect of DMAP
was applicable to the reaction with primary alcohol (eq 2).

ð1Þ

ð2Þ

Considering the effect of DMAP, we assume the reaction
mechanism as shown in Scheme 1. Oxidative addition would be
followed by insertion of CO that is generated by thermolysis
of iron carbonyl complexes.16 The resulting acylpalladium
iodide 5 would undergo DBU-mediated nucleophilic attack at
the carbonyl moiety with a nucleophile.17 Departure of an iodide
and the initial zerovalent palladium from 6 should yield the
product. DMAP would attack acylpalladium 5 at the carbonyl
moiety to generate the corresponding highly reactive acylpyr-
idinium intermediate, which allows hindered secondary amine
and less nucleophilic aliphatic alcohol to participate in the
nucleophilic substitution.

In conclusion, we have found that [CpFe(CO)2]2 is an
efficient carbon monoxide source in palladium-catalyzed ami-
dation, esterification, and thioesterification of aryl iodides with
amines, alcohols, and thiols. Notably, the synthesis of thioesters

Table 2. Synthesis of benzamides

Entry Ar R 1 Yield/%

1 Ph 4-MeC6H4 1b 96
2 Ph 4-MeOC6H4 1c 80
3 Ph 4-CF3C6H4 1d 74
4 Ph 4-NCC6H4 1e 87
5 Ph 2-FC6H4 1f 96
6 Ph 1-naphthyl 1g 70
7 Ph n-C12H25 1h 76
8 4-MeOC6H4 Ph 1i 73
9 4-EtO2CC6H4 Ph 1j 78

10 2-MeC6H4 Ph 1k 79
11 4-AcC6H4 Ph 1l 46
12 9-anthracenyl Ph 1m 36
13 [(E)-PhCH=CH] Ph 1n 51

Table 3. Synthesis of benzoates and benzothioatesa

Entry Ar RXH 2 Yield/%

1 Ph 4-BuC6H4OH 2a 81
2 Ph 4-MeOC6H4OH 2b 78
3 Ph 4-CF3C6H4OH 2c 63
4 Ph 1-naphthol 2d 72
5 4-MeOC6H4 PhOH 2e 63
6 4-EtO2CC6H4 PhOH 2f 70
7 Ph n-C12H25SH 2g 77
8 4-MeOC6H4 n-C12H25SH 2h 88
9 4-EtO2CC6H4 n-C12H25SH 2i 70
10 4-FC6H4 n-C12H25SH 2j 73
11 1-naphthyl n-C12H25SH 2k 60
12 Ph PhSH 2l 45

aConditions for esterification: 0.38 equiv [CpFe(CO)2]2,
1mol% Pd(OAc)2, 2mol% tricyclohexylphosphane. Condi-
tions for thioesterification: 1.5 equiv [CpFe(CO)2]2, 10mol%
Pd(OAc)2, 20mol% tricyclohexylphosphane. Scheme 1. Plausible reaction mechanism.
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with [CpFe(CO)2]2 is a much safer and efficient protocol than
the previously reported reactions employing carbon monoxide
gas of high pressure.18
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